Hi.. :)
Given: f(x+y) f(x-y) = (f(x) + f(y))^2 - 4 x^2 f(y) holds
for all values of x and y.→ The above equation should hold when x = y = 0 i.e
2f(0) = 4f(0) ⇒ f(0) = 0 ..... (I)
→ The above equation should hold when x = y i.e
f(2x) f(0) = (2f(x))^2 - 4x^2f(x)
⇒ f(x) [ x^2 - f(x)] = 0
⇒ f(x) = 0 or f(x) = x^2
Therefore, f(x) ≠ 2.
Option (d) is the answer.
:)