Administrator
|
I am going to show:
Max{x(k):1 ≤ k ≤ n} + Max{y(k):1 ≤ k ≤ n} ≥ Max{x(k) +y(k): 1 ≤ k ≤ n}
By definition of Max(),
Max{x(k):1 ≤ k ≤ n} ≥ x(j) for all 1 ≤ j ≤ n ---(1)
Max{y(k):1 ≤ k ≤ n} ≥ y(j) for all 1 ≤ j ≤ n ---(2)
Adding (1) and (2), we get
Max{x(k):1 ≤ k ≤ n} + Max{y(k):1 ≤ k ≤ n} ≥ x(j) +y(j) for all 1 ≤ j ≤ n
This implies that:
Max{x(k):1 ≤ k ≤ n} + Max{y(k):1 ≤ k ≤ n} ≥ Max{x(j) +y(j): 1 ≤ j ≤ n} or equivalently, if you prefer,
Max{x(k):1 ≤ k ≤ n} + Max{y(k):1 ≤ k ≤ n} ≥ Max{x(k) +y(k): 1 ≤ k ≤ n}
|