24) |log x x_1| + |log x x_2| + |log x / x_1| + |log x / x_2| = |log x_1 + log x_2|
LHS = |log x x_1| + |log x x_2| + |log x / x_1| + |log x / x_2|
= |log x + log x_1| + |log x + log x_2| + |log x - log x_1| + |log x - log x_2|
= |log x + log x_1| + |log x - log x_1| + |log x + log x_2| + |log x - log x_2| (Just changing the order in which the terms are written)
= |log x + log x_1| + |log x_1 - log x| + |log x + log x_2| + |log x_2 - log x| (since |a| = |-a|)
>= |log x + log x_1 + log x_1 - log x| + |log x + log x_2 + log x_2 - log x| (combining first two terms together and next two terms together using |a|+|b|>=|a+b|)
= |2log x_1| + |2 log x_2|
= 2(|log x_1| + |log x_2|)
RHS = |log x_1 + log x_2|
<= |log x_1| + |log x_2|
since LHS = RHS
this implies that
|log x_1| + |log x_2| > = 2(|log x_1| + |log x_2|)
this implies |log x_1| + |log x_2|=0
Thus, |log x_1| = |log x_2| = 0
Hence x_1 = x_2 = 1 substituting in equation |log x x_1| + |log x x_2| + |log x / x_1| + |log x / x_2| = |log x_1 + log x_2|
we get 4|log x| = 0 which gives us x = 1.
Thus there is a unique solution.
:)