|
19.
Consider any finite integer r ≥ 2. Then lim(x→0) f(r, x)/a(x) equals,
(where f(r, x) = log(e)(Σ(0, r) (x^k)); and a(x) = Σ(1, ∞) ((x^k)/k!))
(a) 0,
(b) 1,
(c) e,
(d) log(e)2.
Note: Σ(a, b) g(k) is summation of g(k) over values of k from a to b
x^k is x to the power k
|